

L.I.S.T.E.N.

Language Interpreter and Sign Translator for Educational
Needs

Design Document

Authors:
Jennifer Crowell
Kulvir Sing
Abraham Evangelista
Susan Phillips
Sugnesh Patel

Table of Contents

1. Introduction ..3

1.1 Purpose ...3
1.2 Scope ..3
1.3 Definitions ..3
1.4 Intended Audience...3
1.5 Methodology, Tools, and Techniques ..3
1.6 Overview of the Remainder of the Document ..4

2. Design Overview ..5
2.1 Application Overview ...5
2.2 Constraints ..5
2.3 Assumptions and Dependencies...5

2.3.1 Related Software and Hardware..5
2.3.2 Operating System ...5

3. Interface...6
3.1 Overview...6
available words, and a control bar. ..6
3.2 Interface Specifications ...6

3.2.1 Main Menu...6
3.2.2 Graphic Display Window ...7
3.2.3 Vertical Window Pane..8

4. Systems Architecture..9
4.1 Overview...9
4.2 Main Engine..9

4.2.1 Main Engine Responsibilities ...9
4.2.2 Main Engine Overview...9
4.2.3 Main Engine Methods...10

4.3 Output Engine ...11
4.3.1 Output Engine Responsibilities...11
4.3.2 Output Engine Overview ..11
4.3.3 Output Engine Methods ..12

4.4 Grammar Engine ...12
4.4.1 Grammar Engine Responsibilities...12
4.4.2 Grammar Engine Overview ..12
4.4.3 Grammer Engine Methods..13

1. Introduction

1.1 Purpose
The purpose of this document is to provide an overall description of the design and architecture
of LISTEN. It will provide for technical and design issues and will also provide all the
information required to recreate the database and the LISTEN application.

1.2 Scope
The scope of this document is to contain all information regarding the database and LISTEN
application in as close to the final state as possible. It will use writing and UML diagrams to
describe all the components of LISTEN. The UML diagram is for all the engines and all the
classes that are required for each engine.

1.3 Definitions
GUI: Graphical User Interface.

LISTEN: Language Interpreter and Sign Translator for Educational Needs.

ASL: American Sign Language. This version of Sign Language does not have the same
grammatical structure as the conversational English used by the non-deaf community.

Signed English: Signed English is a version of Sign Language that shares the same grammatical
structure as the conversational English used by the non-deaf community.

Fingerspelling: The act of translating a word using the sign language alphabet.

Interpreter: A member of the non-deaf community whose occupation is to translate spoken
word into either Signed English or ASL for a member of the deaf community.

1.4 Intended Audience
The intended audience for this document is developers only. Since this document is technical, it
is recommended that the readers have background knowledge in order to understand some of the
sections in this document. The reader should have some knowledge of UML diagramming,
databases, OOP, and C# to understand the document at a high level.

1.5 Methodology, Tools, and Techniques
The waterfall methodology is being used for the development of the LISTEN application.

The following tools were used to develop the application: C# .NET, SQL Server 2005, and
Dragon Naturally Speaking 9. A more in depth description of these will appear in the later
sections of this document.

The techniques used include Object Oriented Programming. A more in depth description of this
will be in a later section of this document.

1.6 Overview of the Remainder of the Document
The remainder of this document will cover system design and detailed design of all the classes
for the LISTEN application. The content in the remainder will require some technical knowledge
and the ability to read UML diagrams. The document will be as descriptive as possible, therefore
the writers assume the reader has the technical knowledge necessary to understand the document.

2. Design Overview

2.1 Application Overview
The LISTEN application is divided into 4 major parts (3 engines and a mode). The Main engine
is responsible for calling each mode and reading text from standard input. The Grammar engine
is responsible for matching each string to a sign in the database. The Output engine is
responsible for outputting the video indexed to the token. The four modes are Classroom,
Presentation, Tutor, and Playback. The rest of the document will cover a more in-depth look at
these 4 parts.

2.2 Constraints
Accuracy of translation is limited by the accuracy of the text stream provided by Nuance’s
Dragon Naturally Speaking 9.

2.3 Assumptions and Dependencies

2.3.1 Related Software and Hardware
C#/C++ .NET, and SQL Server 2005 will be used for the development of the LISTEN
application, but the system also needs a third party software such as Nuance's Dragon
NaturallySpeaking 9 to convert speech into text.

2.3.2 Operating System
The operating system that the LISTEN application will be developed on is Microsoft Windows
XP Professional. However, the LISTEN application will be tested on all Microsoft Windows
2000 and later (includes Microsoft Windows Vista).

3. Interface

3.1 Overview

The User Interface is built around a Graphic Display window, which displays the translated Sign
Language video. Depending on the selected mode of the system, this window can be
accompanied by many other windows, which include a display of the token stream, a list of
available words, and a control bar.

3.2 Interface Specifications

3.2.1 Main Menu
3.2.1.1 Three Selection Mode Radio Buttons: At the start of the Application, the

following three selection buttons will be displayed.
 ○ English Sign Translation Mode

 ○ Tutor Mode
 ○ Presentation Mode

3.2.1.2 English Sign Translation Mode - Upon selecting this mode, the text to
English Sign translation Graphic Window displays.

3.2.1.3 Tutor Mode - This mode should take the User to the Tutor Window.
3.2.1.4 Presentation Mode - This mode should set the Graphic Window Display

and Tutor Window for the presentation display.

3.2.2 Graphic Display Window

This window will have the following parts:

3.2.2.1 Upper Window Pane: This pane displays the video or graphic clip. The window

must be large enough to see the complete output clearly.

3.2.2.2 Lower Window Pane: This window pane can display any two of the following:

3.2.2.2.1 English text that is being translated to Signed English.
3.2.2.2.2 Text Description of the video or graphic clip when in Tutor mode.
3.2.2.2.3 Hide Button which hides the Lower Window Pane

3.2.2.3 Control Bar: The control bar can be displayed either on the bottom of Upper

Window Pane or on the bottom of both panes. The bar will have the following
components:

3.2.2.3.1 Play and Pause Button: Play button is used to play the Video or Graphic
clip. While the video or graphic clip is playing, the Play text should change to
Pause. The Pause button pauses the graphic display output.

3.2.2.3.2 Rewind Button: Rewind button will rewind the Graphic display output.
3.2.2.3.3 Forward Button: Forward button will forward the graphic output. This

button is only active in playback mode.
3.2.2.3.4 Repeat Button: Repeat button will repeat the graphic output from start.
3.2.2.3.5 Speed Slider: Speed slider will control the speed of graphic output. Speed

can go from slower to normal.

Figure 3.2.2 Graphic Display Window

3.2.3 Vertical Window Pane
 This will be on left or right side of the Graphic Display Window. This will have the
 following parts:

3.2.3.1 Options Combo Box: This combo box will have Category, Sign English
Dictionary, Alphabets and Numbers.

3.2.3.2 Expandable Words List: This contains the list of words. The list will display
words depending on the selected option from the combo box. Following are the
details about the Options combo box selection:

3.2.3.2.1 Category: If Category is selected from the Option combo box, all the
Signed English categories will be listed.

3.2.3.2.2 Signed English Dictionary: This option will list all the English words
existed in Signed English.

3.2.3.2.3 Alphabetic and Numeric Characters: This option will list the English
alphabet and numbers.

Figure 3.2.3 Graphic Display Window with Vertical Window Pane

4. Systems Architecture

4.1 Overview

Figure 4.1 Class Diagram for LISTEN System

4.2 Main Engine

4.2.1 Main Engine Responsibilities
The Main Engine is responsible for the following functions:

1. Maintain an input buffer queue for the strings coming out from standard input
2. Keeps track of the current token send to Grammar Engine
3. Keeps track of the mode selected in the Main GUI

4.2.2 Main Engine Overview
The speech to text converter, Dragon, converts the audio to corresponding strings which are then
passed from Standard input to the parser in Main Engine. The parser separates the words in the
string and stores them in the input buffer queue. As the input buffer queue reaches its maximum
storage, the contents of input buffer queue are transferred to a secondary storage which is also
used in Playback Mode.

Depending on the mode selected the input buffer queue behaves as follows:

1. Classroom Mode
The strings from Dragon are stored in the input buffer queue. The current position pointer
of the buffer queue is set accordingly when the buttons in the control bar are clicked.
Play: The pointer is at the current string passed to Grammar Engine.
Pause: The pointer is at the current string passed to Grammar Engine, indicating the
position of the string/token to be passed next to Grammar Engine when resumed.
Rewind: The pointer is shifted one string backwards, which is then passed to the
Grammar Engine.
Forward: The pointer is shifted one string forward, which is then passed to the Grammar
Engine.
Seek: Depending on the position of the seek bar, the current position pointer is shifted
back accordingly.

2. Presentation Mode
Works the same as Classroom Mode.

3. Tutor Mode
In tutor mode, the word selected from the list is put in the input buffer queue; then the
word is passed to the Grammar Engine for a match.

4. Playback Mode
As the tokens from the selected text file are stored in the input buffer queue in Main
Engine.
The buttons in the control bar behaves similar to Classroom Mode and the current
position pointer is set accordingly as in Classroom Mode.

4.2.3 Main Engine Methods

The Main Engine implements the following methods:

ReadInput (input:STD_IN):void

Reads the words sent to standard input
Parser(input:string):void

Called by ReadInput (). Separates the words from input string and passed to AddTail()
AddTail(token:String):void

Adds the token to the end of queue
SetCurrentPosition(increment:Integer):void

Sets the position of the token to be sent to Grammar Engine
GetCurrentPosition(): int

Returns the current position of pointer in input buffer queue
PassTokenToGrammer():void

Pass the token at current position to Grammar Engine
GetToken():String

Called by PassTokenToGrammer()
GetWordList(category:String):vector<String>

GetCategories():String

RemoveHead():void
Called when the input buffer reaches the maximum storage and clears the input buffer

4.3 Output Engine

4.3.1 Output Engine Responsibilities
The Output Engine is responsible for the following functions:

1. Maintaining an input buffer queue for the MyWord tokens coming from the Grammar
Engine

2. Maintaining a table of relationships between valid entries in the dictionary, and their
corresponding graphic ouput.

3. Displaying the correct graphic output for a given token
4. Converting words not in the dictionary to finger-spelled equivalents
5. Logging words that are not in the dictionary, and words that are not fingersspellable to a

file for later analysis

4.3.2 Output Engine Overview
The Output Engine contains the following objects:

- MyWord tokens, consisting of a String (which is an ASL phrase parsed by the
Grammar Engine), and an Int (which is the database ID for the phrase.)

- A Vector:Words containing the MyWord token received from the grammar
engine.

- (2) Ints, xLocation and yLocation containing the X and Y coordinates
corresponding to the location of the Graphic Display Window.

When a MyWord token is received by the Output Engine, it is added to the tail of the
inputBuffer.

If Words is not empty, the Output Engine performs the following actions on the MyWord token
at the head of the vector in order:

- Search the Output Database by ID for an entry corresponding to the current token
at the head of Words.

- If a graphic exists, display that graphic, then remove the token from the head of
Words.

- If ID == -1 pass the token on to the FingerSpell() method, and wait for its
completion.

- If a graphic does not exist, pass the token on to the FingerSpell() method, remove
the token from the head of Words, and wait for its completion.

When FingerSpell() receives a token, it performs the following actions in order:

- Create a Vector:Letters to contain MyWord tokens.

- Convert the string into a character array.
- Iterate over the length of the array performing the following actions:

i. Check the current character for an entry in the Output Database.
ii. If a matching character exists, create a token corresponding to that

character and add it to the tail of Letters
iii. If a matching character does not exist, write the current word’s string to

the analysis file, delete Letters, and return control to the main function.
- Iterate over Letters starting from the tail, and perform the following actions:

i. Add the token to the HEAD of Words.
ii. Remove the token from Letters.

- Delete Letters, and return control to the Main() method.

4.3.3 Output Engine Methods
Output Engine implements the following methods:

Search(ID:int):Graphic

Searches the database for a graphic corresponding to ID:Int. Returns a pointer to the
graphic, or Null if nothing is found.

DisplayDescription(token:MyWord):Void
Displays the String associated with MyWord.

DisplayGraphic(token:MyWord):Void
Displays the output graphic associated with MyWord.

AddHead(token:MyWord):void
Adds the token to the head of Words.

AddTail(token:MyWord):void
Adds the token to the tail of Words.

FingerSpell(token:MyWord):void
Breaks a token into more tokens corresponding to its constituent characters.

RemoveHead():void
Removes a token from the head of Words.

4.4 Grammar Engine

4.4.1 Grammar Engine Responsibilities
The Grammar Engine is responsible for the following functions:

1. Removing punctuation and token separators from the input stream
2. Determining if a token is part of the limited vocabulary of the system
3. Tokenizing the input stream (note that tokens can consist of more than one word)
4. Filling a queue with tokens to be displayed by the Output Engine

4.4.2 Grammar Engine Overview
The Output Engine contains the following objects:

- A Vector:String containing strings parsed by the Main Engine
- An Int, currentPosition, containing the value of the current position in the input

stream
- (2) Strings, previousToken and currentToken
- A MyWord, matchToken

When a string is received by the Grammar Engine, it is added to the tail of the inputBuffer.

If the inputBuffer is not empty, the Grammar Engine performs the following actions on the string
at the head of the vector in order:

- Removes all punctuation and formatting of the string.
- Compares the string against a finite list of multi-word tokens, if a match is found

on the first word, checks the next string to determine if a multi-word token must
be formed.

- If a multi-word token is necessary, creates that token, removing subsequent
strings from the head of inputBuffer as necessary, and stores that token as
currentToken.

- If a multi-word token is not necessary, creates a token from the initial string and
store that token as the currentToken.

- Passes currentToken to Output engine.

4.4.3 Grammar Engine Methods
Grammar Engine implements the following methods:

FillBuffer(token::String)Void

Places the currentToken into the buffer so it can be accessed by the Output Engine.
Search():Boolean

Returns true if string matches a token in dictionary, false if there is no match.
SyncData():Void

Sets integer currentPosition to be equal to the position of the currentToken.
PassTokenIdToOutput()

Passes Token ID to Output Engine.
AddTail(token:MyWord):void

Adds the token to the tail of Words.
RemoveHead():void

Removes a token from the head of Words.

